
 

 

 

 

 

 

Project P923-PF 

Multilingual WEB sites: Best practice, guidelines 
and architectures 
 
Deliverable 1 

Guidelines for building multilingual Web Sites 

Volume 1 of 5: Main Report  

 
 

 

Suggested readers: 
This document is primarily aimed at anyone who is involved in the process of designing, 
building or managing WEB sites.  It is of immediate relevance to those involved with 
multilingual WEB sites, but it nevertheless, provides information which will allow 
monolingual WEB site designers to design sites that are economically upgraded to 
multilingual sites. 

 

 

 

 

 

 

EDIN 0007-0923 

Project P923 

For full publication

September 2000



 

 2000 EURESCOM Participants in P923-PF 

EURESCOM PARTICIPANTS in Project P923-PF are: 

• Koninklijke KPN N.V. 

• France Télécom 

• British Telecommunications plc 

• Telecom Italia S.p.A. 

• Portugal Telecom S.A. 

 

 

 

 

This document contains material which is the copyright of certain EURESCOM 
PARTICIPANTS, and may not be reproduced or copied without permission. 

All PARTICIPANTS have agreed to full publication of this document 

 

The commercial use of any information contained in this document may require a 
license from the proprietor of that information. 

 

Neither the PARTICIPANTS nor EURESCOM warrant that the information contained 
in the report is capable of use, or that use of the information is free from risk, and 
accept no liability for loss or damage suffered by any person using this information. 

 

This document has been approved by EURESCOM Board of Governors for 
distribution to all EURESCOM Shareholders 

 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 1 (29) 

Preface 

Multilinguality is quickly becoming a major issue for the European Telecommunications 
Companies. Telcos are developing into full-service companies, that offer a wide range of 
services (e.g. e-commerce) via the Internet. Many Web services must be offered in several 
languages. The design and maintenance of multilingual Web sites require tools and 
procedures well beyond what is needed for mono-lingual Web sites. Without suitable tools -
based on standardised architectures for multilingual Web sites - these sites and the attendant 
services are very expensive to create and manage. 

 

In previous R&D projects in the field of Web and language technology it has appeared that 
truly multilingual developments are only possible if companies and research groups from 
different countries representing different languages collaborate. Therefore EURESCOM was 
the perfect frame to undertake studies in this area, and EURESCOM shareholders will reap 
substantial benefits from them. 

 

Though the technology in that area is not expected to become completely mature before a few 
years, the speed of development is increasing. Thus telecommunications companies which 
have experience with cost-effective procedures for developing and maintaining multilingual 
Web sites will be in a position to acquire a considerable share of this emerging market.  

 

The main focus of EURESCOM PROJECT P923 is the development of best practice 
guidelines for the design of multilingual (and therefore essentially also multicultural) Web-
based information and transaction services.  

 

The key results to be provided by the project include: 

• a generic architecture for multilingual Web sites that are easy to design and maintain. 

• best practice guidelines for building and maintaining multilingual Web sites.  

• inventory of existing tools for multilingual text production and knowledge about their 
suitability for aiding the creation and maintenance of multilingual Web sites.  

• practical experience with the creation and use of several multilingual Web sites. 

 

This report is intended to address the first three points and to be used as input to the last part 
of the project which will take care of building a demonstrator as well as summarising the 
lessons learned in a second and last report ‘Experiences in designing and building 
multilingual web sites’ in Q4 2000. 

 

The project has five participating companies and is lead by Els den Os from Koninklijke KPN 
N.V. 



Guidelines for building multilingual Web sites Deliverable 1 

page 2 (29)  1999 EURESCOM Participants in P923-PF 

Executive Summary 

As small businesses and large corporations alike attempt to gain the largest market possible 
for their products, they naturally have to address the global market place.  Fierce competition 
in every business sector means that the businesses that only address the national market will 
find that they are too inefficient. 

There are various barriers to addressing a global market including legislation, logistics, 
language and culture.  In this document we are concerned with the methods of providing a 
multilingual WEB-based service.  The scope of this document includes architectural, design, 
procedural and linguistic issues, but excludes legislative and logistical issues. 

The key to creating a service or product, which can be cost-effectively localised, is for the 
whole design and development team to think multilingual right from the beginning.  It is 
extremely easy to unconsciously make assumptions, which will increase the cost of porting 
the system to another locale.  For example, poor choice of character representation at the 
outset of a project may demand significant re-engineering if it does not support locales, which 
are later needed.  Another example is that it is common practice for a programmer to embed 
strings within source code.  Some primitive text processing is often carried out such as 
appending two texts to make a sentence.  This tendency to embed locale-specific information 
within programming logic is not tenable in a multilingual environment. 

From a design point of view, there needs to be the cleanest possible separation between 
different kinds of data.  Ideally, all locale-specific and locale-independent data and procedures 
would be stored separately.  They should also be further subdivided according to the kinds of 
skills required to maintain and localise them. 

One of the major expenses in localising any product is the cost of translation.  Automatic 
systems currently perform very poor quality translations when compared with professional 
human translators.  However, due to the cost and slowness of manual translation, automatic 
translation systems do have their place.  If text is updated frequently, is domain-specific and 
is linguistically of the appropriate type, then automatic translation systems can produce 
sufficiently good translations. 

Other possibilities for reducing the cost of translation include carefully designing the Web site 
to be global that is to contain only a small number of elements which cannot be directly used 
for other locales. 

Other language tools are already in use on monolingual Web sites.  For example, document 
indexing and retrieval systems are now very common.  These can become considerably more 
complex in a multilingual environment, especially if cross-linguistic retrieval is required.  For 
example, we might wish to enter a query in one language and yet have the system retrieve 
relevant documents that were written in a different language.  We may also wish to have the 
retrieved documents automatically translated. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 3 (29) 

List of Authors 

Luís Almeida (PT) 

Stephen Appleby (BT) 

Nuno Beires (PT) 

Malek Boualem (FT) 

Louis Boves (KPN/University of Nijmegen) 

Gloria Branco (PT) 

Maurizio Codogno (IT) 

Carolina di Cristo (IT) 

Els den Os (KPN) 

Marta Pombo Prol (BT) 

Jérôme Vinesse (FT) 



Guidelines for building multilingual Web sites Deliverable 1 

page 4 (29)  1999 EURESCOM Participants in P923-PF 

Table of Contents 

Preface ............................................................................................................................ 1 

Executive Summary........................................................................................................ 2 

List of Authors ................................................................................................................ 3 

Table of Contents ........................................................................................................... 4 

Abbreviations ................................................................................................................. 6 

Definitions ...................................................................................................................... 7 

1 Introduction ............................................................................................................. 1 

.2 Why make your WEB site multilingual? ................................................................ 2 

3 Multilinguality Framework ..................................................................................... 4 
3.1 Roles in Multilinguality ................................................................................ 4 
3.2 Human-related Roles .................................................................................... 5 

3.2.1 Multilingual Web Designer ............................................................. 5 
3.2.2 End User .......................................................................................... 6 
3.2.3 Builder ............................................................................................. 6 
3.2.4 Web Manager .................................................................................. 6 
3.2.5 Translator ......................................................................................... 6 

3.3 Technology-oriented Roles........................................................................... 7 
3.3.1 Browsers .......................................................................................... 7 
3.3.2 Language Tools ............................................................................... 7 
3.3.3 Content Management Tools ............................................................. 7 
3.3.4 Web Support Tools .......................................................................... 7 

4 Guidelines for Multilingual Services ...................................................................... 8 
4.1 Parallel vs. non-Parallel WEB sites .............................................................. 8 
4.2 Locale-independent navigation..................................................................... 9 
4.3 Separation of Content from Formatting ...................................................... 10 
4.4 Active client components ........................................................................... 11 
4.5 Active server components .......................................................................... 11 
4.6 Off-line vs. dynamic WEB page creation ................................................... 12 
4.7 Language Negotiation ................................................................................ 13 
4.8 General Guidelines for HTML files ........................................................... 13 
4.9 Pages with embedded scripts ...................................................................... 14 
4.10 Graphics ...................................................................................................... 15 
4.11 Use of a Translator's Workbench ............................................................... 15 
4.12 Web Content management tools ................................................................. 16 
4.13 Web site management tools ........................................................................ 16 
4.14 Scripting languages and character encoding............................................... 16 

5 Possible Implementations ..................................................................................... 18 
5.1 A simple Web site ...................................................................................... 18 
5.2 A basic site with embedded scripts ............................................................. 19 
5.3 A semi-parallel site ..................................................................................... 19 
5.4 WEB sites using databases ......................................................................... 21 

6 Tools for multilingual web sites ........................................................................... 22 
6.1 Enterprise/Management tools for multilingual web sites ........................... 22 
6.2 Linguistic Tools .......................................................................................... 22 

6.2.1 Translation ......................................................................................... 23 
6.2.1.1  Machine Translation ..................................................................... 23 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 5 (29) 

6.2.1.2 Translation Memories .................................................................... 23 
6.2.2 Automatic generation of text from data ......................................... 24 
6.2.3 Automatic Text Summarisation ..................................................... 24 
6.2.3.1 Types of Summaries ...................................................................... 24 
6.2.3.2 Commercial Systems ..................................................................... 25 
6.2.4 Information retrieval ...................................................................... 25 
6.2.4.1 Cross-language information retrieval ............................................ 25 
6.2.4.2 Information Extraction .................................................................. 26 

7 Conclusions ........................................................................................................... 27 

8 References ............................................................................................................. 29 



Guidelines for building multilingual Web sites Deliverable 1 

page 6 (29)  1999 EURESCOM Participants in P923-PF 

Abbreviations 

ASP Active Server Pages 

CAT  Computer Aided Translation 

CGI Common Gateway Interface 

CSS Cascading Style Sheets 

DHTML  Dynamic HTML 

HTML  Hypertext Markup Language 

PHP Parsed Header Processing 

SSI Server Side Include 

WWW  World-Wide Web 

XML  eXtensible Markup Language 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 7 (29) 

Definitions 

Locale 

A locale refers to a collection of people who share language, writing system and any 
other properties which would require a separate version of a product.  The way the 
World's population is partitioned into locales will depend on the details of the 
product. 

In the software and information technology industries, the term is used to refer to the 
collection of procedures and data that vary from one localised version of a product to 
another. 

Internationalisation 

Internationalisation is the preparation of a product so that it can be customised for 
particular locales efficiently. 

Globalisation 

Globalisation is the design of a product so that it remains the same for all locales. 

Localisation 

Localisation is the customisation of a product for a particular locale. 

 





Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 1 (29) 

1 Introduction 

The idea for the EURESCOM project ‘Multilingual Web sites: Best Practice and Guidelines 
and Architectures’ (P923) was the result of a pre-study project that was also conducted in the 
framework of EURESCOM (P814: Pre-study on Speech-to-Speech Language translation).  
This pre-study gave an overview of speech and language technologies and possibly interesting 
services that can be supported by these technologies. Two project proposals were formulated 
at the end of the project, of which this one on multilingual web sites was finally approved by 
the EURESCOM board.  

The aim of this project is to develop ‘best practice guidelines’ for building and maintaining 
multilingual Web sites and services.  

We made a detailed investigation of the needs of multilingual web services within the Telco’s 
that participate in this project (IT, KPN, PT, FT R&D, BT). In addition, detailed surveys were 
made of  

• Available tools and procedures for managing (multilingual) web sites 

• Language related tools, like Machine translation, summarisation, etc.  

• Possibilities to add voice input/output to web sites e.g. VoiceXML  

Although we included an overview of the voice input/output issues, since this might become 
extremely important for Telco’s in relation to voice portals, the scope of the project does not 
lie on this topic. The next phase of the project was to define a number of possible services that 
can be built in the second phase of the project. These services have to be relevant for testing 
as much multilingual aspects as possible, including maintenance and usability of web and 
language tools. In this deliverable we present an overview of this first exploratory phase of 
the project. It gives a clear overview of possible ways to address the problem of multilingual 
web generation and maintenance. The target audience of this deliverable are web designers, 
product managers of web sites, and technical web builders.  



Guidelines for building multilingual Web sites Deliverable 1 

page 2 (27)  1999 EURESCOM Participants in P923-PF 

.2 Why make your WEB site multilingual? 

Telecommunication companies are developing into full-services companies that offer a wide 
range of services via the Internet. Many web services must be offered in several languages, 
since many Telcos will be active in other countries than their own, and web customers are 
global customers.  

From reviewing existing multilingual sites and by interviewing web and service managers 
within the five network operators of this project, it is very obvious that multilinguality on the 
Internet is quickly becoming an important topic for all service providers in the world. 
Multilingual web sites may cost a lot of money and effort, since for most services it is 
inevitable that human translators are involved. Our review and interviews showed that 
presently localisation often is an ad hoc process.  

At this moment the Internet contains millions of web sites and about 85% of them are in 
English. However, it is expected that the non-English speaking web users will outnumber the 
English-speaking users already in 2000 (see Figure 1). Thus, it is no longer enough to 
translate local web sites only to English.  

In 2005, one expects the Web to reach one billion users and even 70% of them will be non-
English speaking.  

It means that much effort has to be put into localisation of existing web sites and into the 
creation of new multilingual services, since it is certain that most web users prefer to be 
addressed in their native language, at least at the top-level pages of services. These top-level 
pages need to be perfect, since otherwise the risk is high that the customer will gain a poor 
impression of the company. In the multilingual Internet the motto “The competition is just a 
mouse click away” is very true indeed. Forrester mentions that customers, who are addressed 
in their own language, will stay at a site twice as long. In addition, they will spend tree times 
as much money when they can use their own language. Given the enormous growth in web 
population, it is clear that you can earn much more money when you can offer the right 
language.  

 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 3 (29) 

 

Figure 1  
Online Language Populations 



Guidelines for building multilingual Web sites Deliverable 1 

page 4 (27)  1999 EURESCOM Participants in P923-PF 

3 Multilinguality Framework 

This chapter introduces a high-level overview on “a framework of the things to be 
considered” when addressing multilingual services on the Internet. It provides a perspective 
on a multilinguality framework that can be used to set the scene and to better understand the 
guidelines and contents presented in the remaining chapters of this deliverable. The 
multilinguality framework considered by the Babelweb Project corresponds to a group of 
human-related roles that interact with another set of roles (or functions) provided by 
technology-oriented capabilities in order to deliver multilingual web-based services. 

3.1 Roles in Multilinguality 

When building a web site, be it mono or multilingual, it can be useful to consider it as the 
composition of a series of roles. In this context, a "role" is simply a logical function that 
interacts with other roles and has an internal coherence of its own when considered in the 
global framework. No further commonality can be found among different roles; in fact it is 
possible to view roles to be played by persons (user, designer, etc.) and roles to be played by 
technology capabilities (tools, content resources, etc.). The focus here is much more on the 
“roles” themselves than on the “actors” (or the players). This is because actors may perform 
different roles depending on various circumstances external to our multilinguality problem 
domain (e.g. type of company, size or positioning on the Internet market for humans and 
product range or level of coverage for tools).  

During its studies the Project has identified a list of roles and their interactions belonging to 
the multilinguality framework. Some of these roles are of course general, but some others are 
specific to multilingual web sites and some others may provide other functionality. The 
following human-related roles are included: 

• Multilingual Web Designer 

• Builder 

• Translator 

• End User 

• Web Manager 

The following technology-oriented roles are considered in the multilinguality framework: 

• Browser 

• Web Support Tools 

• Language Tools 

• Content Management Tools 

These roles and the relations between them can be observed in Figure 2. A brief explanation 
of each role and its relationships with other roles is presented below. 

 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 5 (29) 

Browser

Human Roles

Content Management

Language ToolsMultiLingual Web
Services Platform

Browser

Web support Tools

Technology oriented

End User
Builder Translator

Multilingual Web DesignerWeb Manager

 

Figure 2 
Relationship between the different roles associated with a multilingual Web site. 

3.2 Human-related Roles 

3.2.1 Multilingual Web Designer 

This is the person that sets up the structure of the web site. In the case of a multilingual site, 
the web designer must define how the various language versions fit into the overall structure. 
Moreover, the designer must take into account the fact that localised pages may be created in 
different ways, and sometimes have a different layout due to language constraints. The web 
designer should define and organise the web site having in mind a set of rules that facilitate 
the information localisation process and help to decrease the overall cost involved. An 
example of such rules is included below: 

• leave text outside graphics, 

• provide source graphics with layers and fonts, 

• use a database system to allow a separation between navigation and contents, 

• leave sufficient space for translations, 

• separate strings from code when using scripts, 

• use variable names that are not words in the scripts, 

• avoid the breaking of sentences inside the script code; 

From the rules presented above we can retain the idea that the solution found by the designer 
should separate the language-independent content from the language-dependent content that 
requires translation to all languages supported by the web site. 



Guidelines for building multilingual Web sites Deliverable 1 

page 6 (27)  1999 EURESCOM Participants in P923-PF 

During the conceptualisation of the web site, the designer should analyse carefully the content 
of each page and decide which are the most adequate language resources and tools to translate 
the page. There are some aspects that must be considered such as the complexity of the text, 
the data-update rate and the page access rate to the pages of the site. If the page contains only 
words or short sentences a machine translation could be used, corresponding to an on-line 
translation of the content. On the other way, if the page contains complex text a human 
translation is better recommended, which corresponds to an off-line translation. The data-
update rate is also a criterion for the designer to decide whether to use on-line translation or 
off-line translation. If the pages are updated at a high rate and the content is composed by 
short sentences an on-line translation tool can be used to reduce the maintenance costs of the 
web site. Usually the pages in a web site are organised hierarchically and the pages located in 
the top levels are accessed more often. For these pages it is recommended to use off-line 
translation, since it is not possible with the current automatic translation tools to guarantee a 
good quality translation.  

The use of on-line, off-line translation or a combination of both allows a complete parallelism 
making all documents available in all languages. However there are situations where it is not 
possible to achieve a complete parallelism for all the languages due to economic reasons or 
the target users profile. The other extreme of the parallelism is the degree to which all the 
information is available and accessible in the same form independently of the language. 

The designer interacts with the builder, giving him actual instructions about how to build the 
site, and with the translator, to get a feedback about the localised pages and have an idea 
about the needs of the site users. 

3.2.2 End User 

It is not immediately clear that the end user also plays a role; but, of course, a site is useless 
without them! They play an active part in the global scheme, since they access the site and 
choose the preferred language, maybe switching between languages while browsing the site. 
The only direct interaction that end users have is with their browsers. 

3.2.3 Builder 

He is the person who actually builds the site. Note that he does not necessarily understand 
every language involved, which in fact is quite common. The builder may however notice 
flaws in the practical implementation of the structure of the site, interacting therefore with the 
web site designer. He also interacts with the translator, exchanging information about the 
rendering of the site, and may directly interact with the language tools if needed. 

3.2.4 Web Manager 

The web manager has to guide the work of the Web developing team (Web designer, Builder) 
according to the business goal of the site taking in consideration the opinions and suggestions 
expressed by the end user during the contacts established between them. The web manager is 
also the person responsible by the maintenance and the update of the web site. This role is 
particular important in a multilingual web site context due to the complexity of this kind of 
sites compared with monolingual sites, as often it requires a more demanding maintenance 
and updating policy. There are some aspects that can influence such policy: the information 
update rate, the structure of the web site (translated off-line pages versus translated on-line 
pages), and the degree of parallelism between the languages supported in the web site. 

3.2.5 Translator 

The role of the translator consists of course in translating the pages of the site in the various 
languages. In fact, this role may be acted either by a person or by an automatic system.  In an 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 7 (29) 

actual site both actors will be probably present, unless the site is small or rather static, in 
which case only the human being is necessary. This may depend also on the type of 
information on the site and on the adopted translation approach: either off-line or on-line 
(automatic) translation or a combination of both. The translator has a strong interaction with 
the language tools, other than with the designer and the builder. Noticeably, he does not have 
any direct interaction with the site itself. 

3.3 Technology-oriented Roles 

3.3.1 Browsers 

It may not be obvious why there is a browser role in a (multilingual) web site. However, the 
answer is simple: the browser is the interface towards the end users, so it mediates their 
perception of the site. A browser must therefore be capable of supporting the character sets 
for the involved languages. The browser interacts with the end users and with the site. 

3.3.2 Language Tools 

These tools are necessary for the translator, if he is a human being, to help him building up 
the localised versions. Examples of such tools are online dictionary and context-based 
translation tools, which offer the translator a suggestion for a version of a sentence, based on 
the similar occurrences in the previous contexts. There are some other tools like machine 
translation that can be incorporated in the web site to support automatic translation of the 
pages without human intervention. Machine translation tools may be combined with on-line 
dictionaries and context translation tools to achieve a translation with higher quality. There is 
an interaction between language tools and content management tools, since the former may 
access a database of translations. Builder and translator may also use those tools. 

3.3.3 Content Management Tools 

The instruments that belong to this role are those which are necessary to manage all the 
information contained in the site. Examples of these tools are database system, which tie 
together the versions of the same logical page; and the web editing languages, like PHP or the 
ASP system, which act as an interface between the databases and the appearance of the pages. 
The only interaction of these tools is the one with language tools, and with the site itself. By 
this way it is possible to achieve a separation between the content and the design. 
Additionally, content management systems can be used to keep track of what files and what 
database content has been modified and has to be translated. Alternatively a file exchange 
format can be developed to check out files from the content management system, and check in 
them again. 

3.3.4 Web Support Tools 

In this broad category we find all those tools which are necessary to build and maintain the 
site, and which do not belong to the other roles. The most important tools in this role are the 
web editors, which must accept text in the various languages involved and if possible must 
allow a side-by-side editing, to check at a glance the parallel versions. These tools interact 
only with the site itself. 

Comprehensively, the multilinguality framework presented above is very much centred on the 
Multilingual Web Designer role since that was the approach followed by the Project. The 
main objective was to produce a set of focused guidelines that may structure the 
multilinguality problem domain and offer guidance to the designer in delivering effective 
multilingual web services. 



Guidelines for building multilingual Web sites Deliverable 1 

page 8 (27)  1999 EURESCOM Participants in P923-PF 

4 Guidelines for Multilingual Services 

The primary aim of these guidelines is to simplify the management of a multilingual WEB-
based service.  In practice, a large part of this consists of attempting to maintain a separation 
of different kinds of information that constitute a multilingual WEB site.  The information 
should be separated roughly according to the roles of the people who have to deal with this 
information.  This means that say, translators should not find they have to edit JavaScript, and 
graphic designers should not have to work in several languages. 

The various kinds of information present on a WEB site are: 

• Formatting 

• Content (text, graphics etc.) 

• Navigational information 

Even for monolingual WEB sites, we would wish to maintain the cleanest separation possible 
between these different kinds of information.  One of the criticisms of HTML is that it does 
not provide any mechanism to separate content from format.  In the case of multilingual WEB 
sites, we have the additional dimension that each of these may contain locale-dependent and 
locale-independent parts.  The following table summarises the situation. 

 Locale-dependency 

Formatting Locales with similar scripts are likely to share the same format.  E.g. all 
Western European locales could use the same formatting.  However, 
scripts that use, say, Han characters will most likely require a 
significantly different format. 

Content Content is normally highly locale-dependent.  However, this is not always 
the case.  Images might be global, and in some cases a kind of 
"globalised" English might be used for the text.  For simpler sites, it may 
be more efficient not to separate locale-dependent content from 
formatting. 

Navigational 
information 

This depends very much on how parallel the different localised versions 
of the WEB site are (see below). 

Table 1 
Factorisation of information common across locales. 

Ideally we would like to maintain a clear separation of formatting, content and navigation and 
for each of these separate the locale-dependent parts from the locale-independent parts.  In 
practice this is unlikely to be achievable.  For very small WEB sites, the overhead of setting 
up an infrastructure to maintain separation may be too great and it may be more appropriate to 
allow some overlap of different kinds of information.  For larger WEB sites, the management 
costs will be greater, and therefore there will be more benefit from maintaining separation in 
this way. 

4.1 Parallel vs. non-Parallel WEB sites 

The different language versions of a WEB site may exhibit various degrees of parallelism.  At 
one extreme, we could have each version of our WEB site so dependent on locale that its 
localised variants bear virtually no resemblance to each other.  At the other extreme, it could 
be that the information on every page is localised and the relations between them are 
preserved, making the sites exactly parallel.  It could be that the structures of the sites are 
identical, but that certain information is only relevant to particular locales.  For example, 
certain legal disclaimers may be required for certain countries and not for others. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 9 (29) 

We may identify a scale of parallelism (of course there could be finer sub-divisions): 

1. Completely independent sites for each  locale, 

2. Parallel structure to the sites, but the information present on each page is 
completely different, 

3. Parallel structure to the sites, but the information present on each page is slightly 
different, 

4. Parallel sites, but where some pages have not been localised (e.g. due to cost), 

5. Completely parallel sites with identical structure and information. 

This document does not address (1), since these are not really multilingual sites, but a 
collection of independent monolingual sites. 

In case (2), we will require that all information is generated separately, but that the navigation 
and storage structures remain the same.  In order for the sites to have a similar storage or 
navigation structure, it must be that each localised version of a page plays a similar role, even 
though the information presented by each localised version is different.  For this to be 
apparent, the pages must be labelled with the role that they play (perhaps by appropriate 
choice of filename). 

In case (3), the units of information must be smaller than a page.  Otherwise it will not be 
possible to indicate what information should be shown for a particular locale and what should 
not. 

Case (4) is extremely common.  Often a commercial WEB site will have the top-level pages 
professionally translated, but will not have the lower level pages translated.  This is quite 
straightforward to deal with by having a default locale (or a series of preferred locales). 

Case (5) is the most straightforward from an architectural point of view, but less common 
than the previous case.  

When different localised versions of WEB sites contain non-parallel information, there may 
be some impact on the navigation.  If the targets of navigation links are pages and all pages 
have corresponding versions for each locale, even though the details of the information 
present may not be the same, then there navigation will not be disrupted.  It may be that entire 
pages are present for certain locales, and they do not exist at all for others.  In this case, it is 
potentially very easy to have broken links. 

To overcome this, and facilitate management of the site, it is important to know what the 
'atomic' units of information are, which units are relevant for which locales, which units are 
present for which locales, and what the navigational structure is that relates these units. 

4.2 Locale-independent navigation 

When trying to manage a complex multi-locale Web site, it is useful to factor out those 
elements that are common between the different localised versions of the site.  When the 
different localised versions are highly parallel, then they will share much of the navigational 
model. 

We would ideally like to completely divorce the navigational model from all other aspects of 
the Web site so that this could be managed independently of locale.  This would allow us to 
specify policies in a locale-independent manner.  Due to the nature of hyperlinks though, 
complete separation is impossible without placing undue restrictions on the way hyperlinks 
can be used.  For example, we may wish to attach a hyperlink to a particular word in one 
language, but we will of course need to attach it to a different word (perhaps the translation of 
the original word) when the document is translated into another language. 



Guidelines for building multilingual Web sites Deliverable 1 

page 10 (27)  1999 EURESCOM Participants in P923-PF 

In the case of a simple, monolingual Web site, one would embed each link in the HTML code 
and indicate the target page (and optionally location within that page) as a property of the 
link.  If the page is to be translated to another language, the link will be associated with 
different text and the target of the link may also be changed to refer to the page in the 
appropriate locale. 

The fact that the link will be associated with different text for each locale means that we 
cannot make all navigational information locale-independent. However, we could use a 
locale-independent indication of the target of the link and allow some other mechanism to 
decide which localised version of the target should be displayed.  When language negotiation 
is used, this is effectively what happens.  However, there are various reasons why it may be 
undesirable to rely on language negotiation as the complete solution. 

One possibility would be to insert anchors for links into the text as usual, but instead of 
referring explicitly to the target, they are de-referenced through a locale-independent table.  
This would allow the behaviour of links to be made explicit through the use of rules. 

Possible triggers for different behaviours are; 

1. Does the target exist in the preferred locale? 

2. Is the target part of our site or an external site? 

Possible behaviours are; 

1. Remove the source of the link 

2. Display the target information in a representation for some other locale than that selected 
(perhaps using language negotiation, or having some default locale for the site). 

3. Pass the target page through a utility such as a translation tool or a summarisation tool. 

So, an entry in the link table could be, 

 link1 => translate(eng, http://www.someone_elses_site.co.uk/page1) 

Whenever anyone clicks on this link, they would be presented with a translation of the target 
page into English. 

4.3 Separation of Content from Formatting 

As stated in the previous section, it is desirable to factor out that information which is 
repeated multiple times in order to facilitate its management.  In multilingual WEB sites, this 
means that we should attempt to separate out all information that is the shared by several 
locales.  Generally speaking, even for monolingual WEB sites, we should try to separate 
formatting from content.  For a multilingual WEB site this is even more important, since we 
will often wish to share styles amongst several locales. 

One of the criticisms of HTML has been that it provides poor separation of content from 
format.  With dynamic HTML this is much less the case, since style sheets can be used to give 
sufficient control over formatting for many purposes.  Style sheets can be stored separately 
from the content of the page and shared by any number of pages. 

This is certainly an improvement on putting the font details etc. directly into HTML files, but 
we really need to do much more than separate details of the style from HTML files.  In the 
case of multilingual WEB sites, we need to take into consideration that translators will work 
with the content files. Therefore, we would like the content to be as free from markup 
instructions as possible (although it may be said that, if a particular word is made italic in the 
source language, then the translator will have the responsibility of choosing which word or 
phrase is made italic in the target language). 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 11 (29) 

A reasonable solution is that complete HTML pages are built by combining units of content 
with an HTML template (using a style sheet as well if necessary).  XML provides one way to 
do this, but it is quite possible to achieve this separation without the use of XML. 

Units of information that have been localised should be labelled with a locale-independent 
information label and the locale label.  This will make it much easier to identify content units 
that are translations of one another automatically.  

One of the problems with separating formatting from content, is that different language texts 
will be different in length.  It is important then, that the presentation process can properly 
display strings of different length in the same fields. 

4.4 Active client components 

As well as presenting information, WEB pages can contain various other components, such as 
scripts, Applets etc.  These too, will need to be subject to the same principles of multilingual 
management as any other kind of content. 

It is useful to distinguish between compiled and non-compiled information.  The localisation 
of compiled components is outside of the scope of this document since there will be various 
mechanisms available for internationalising these components depending on the language 
they are written in and the development environment. 

When components are not compiled, they may essentially be considered as normal content 
from the point of view of multilinguality.  For example, a JavaScript component may contain 
data and procedures that are locale-specific.  These should be treated as any other textual 
content, with locale-independent parts of a script being kept separate from locale specific 
parts. 

Where there are locale-independent scripts, these will be stored in the same way as all other 
locale-independent content.  As mentioned above, it may be practical for small sites to allow 
locale-independent information to be stored as part of the formatting.  For larger sites, it will 
be more efficient to maintain a clean separation of formatting from content and so scripts 
should be stored separately from formatting information. 

For larger sites, it will be useful to be able to separate the locale-dependent information 
according to what kind of skills are required to localise it.  For example, a JavaScript that is to 
display the date will be a localisable element.  Generally, translators do not have the skills to 
localise JavaScript and therefore any such scripts should be labelled in a way that 
distinguishes them from say, ordinary text (for example, by using a context-sensitive editor 
which is capable of recognising JavaScript). 

4.5 Active server components 

Active server components includes CGI scripts, Server Side Includes and a variety of other 
mechanisms for processing or generating WEB pages before they are passed from the server 
to the client. 

As with active client components, a distinction may be made between compiled components 
and interpreted components.  Compiled components are out of the scope of this document. 

Any scripts which are stored with the HTML page should be treated in the same way as active 
client components mentioned above.  Scripts which are stored separately could again be 
managed in the same way, by removing all locale-specific parts of the script and putting them 
in separate files for easy management. 



Guidelines for building multilingual Web sites Deliverable 1 

page 12 (27)  1999 EURESCOM Participants in P923-PF 

4.6 Off-line vs. dynamic WEB page creation 

The idea of creating the WEB site off-line by combining data elements with HTML will work 
for simple WEB sites which are designed to present information that is updated infrequently, 
but it is not appropriate in certain circumstances.  A static WEB site would not be appropriate 
where the content of the WEB page is generated automatically, perhaps in response to a user 
query, or where the data needs to be updated quickly or asynchronously, so that batch mode 
updating of the site in not feasible.  It is also impractical where a very large number of pages 
would be created.  For example, it would not be appropriate to generate a static HTML page 
for every book in amazon.com! 

Dynamic creation of WEB pages is possible by executing code on either the server or the 
client.  There are a number of technologies available for both (see Annex A, sections 5: 
Dynamic HTML and ASP).  Where WEB pages need to be built using data that is held on the 
server, server-side code is the best option.  However, it does place a far greater demand on the 
server, which can result in very poor performance.  These performance issues are being 
addressed.  For example, ORACLE claims to have an efficient system of using "Cartridges" 
which can also delegate processes to other machines.  Microsoft's IIS WEB server uses 
lightweight processes that are managed by the server itself to reduce start-up times and 
memory overheads.  Apache provides for lightweight CGI scripting using a built-in Perl 
module instead of running an instance of the Perl interpreter each time a page is accessed. 

From a multilingual point of view there are considerable benefits from using dynamic 
generation of WEB pages.  It allows the possibility of controlling locale in a dynamic way, 
dependent on whether pages are present or not and allowing pages to be generated from on-
line data. 

A server-side process could be used to maintain the separation of locale-specific information 
from locale-dependent information, just as in the case of static WEB sites.  That is, resource 
identifiers can be used to mark areas in HTML files into which locale-dependent text must be 
inserted.  Separate files can be used as resource files that contain the values of locale-
dependent resources. 

Any server-side process can do this and much more besides.  One possibility is that a 
JavaScript menu is present on (at least) the home page and is used to set the language and any 
other locale preferences and store them in cookies.  Each time a page on our WEB site is 
accessed, the CGI script queries the cookies to determine the parameters of the page that 
should be returned. 

Dynamic generation of WEB pages also allows the possibility of processing pages external to 
your WEB site before presenting them to the user.  This is similar to say, the AltaVista WEB 
site, which allows you to translate a WEB page at a given URL. If you click on a link on a 
translated page, you will be presented not with the page itself, but with a translation of that 
page. 

There are many cases where HTML pages are not built directly, but are created from 
structured data.  The data typically comes from a database, but may come from a real-time 
feed (e.g. stock market information, weather etc.). 

A typical application would be a catalogue for an e-commerce system, where the user can 
browse or search the catalogue for a particular item and the appropriate page will be 
displayed. 

When an HTML page is to be created from data, there will be an HTML template which will 
include some instructions indicating where the data should be inserted and how to get it.  This 
is the almost standard model used by Active Server Pages.  It may be that the template itself is 
locale-dependent, and it will certainly be the case that the information to be displayed is 
locale-dependent. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 13 (29) 

Dynamic generation of WEB pages allows considerably more flexibility than the static pages 
described above, albeit at the cost of greater complexity and slower retrieval of pages.  In this 
situation we can make use of cookies to store and act on user preferences.   

There is also the possibility of processing other sites' pages before presenting these to the 
user.  For example, if it is decided that information from other sites should be translated 
before being presented to the user, then this can happen.  The translation service on the 
AltaVista WEB site is such an example.  Here if you request that a page at a particular URL 
be translated, then all the links on the translated page will be modified to pass through the 
AltaVista site for translation as appropriate.  This is quite simple to achieve with a dynamic 
WEB site. 

4.7 Language Negotiation 

Language negotiation is where the user sets their preferred languages, in order of preference, 
in the browser.  The browser then "negotiates" with the server to attempt to find a page in a 
suitable language. 

If we are to rely on language negotiation, we cannot allow users to choose their own language 
from a control on the page.  This is because language negotiation requires that the URLs of 
the pages requested do not indicate language, but that language preference is taken from the 
preferences set in the user's browser.  If the browser requests a language-specific URL, then 
this will override language negotiation. 

It may be difficult to rely on language negotiation since it may not be set correctly.  If 
language negotiation is to be used, it would be useful to indicate this explicitly on the front 
page of the site, along with some instructions for setting language preferences, otherwise the 
user may never know that other language versions are available. 

Ideally, we would like a control to be present on our WEB pages which allowed the user to 
select their language preference.  This control would in turn set the language preference in the 
user's browser.  Unfortunately, it is not possible to set the language preference in this way (in 
Netscape's Communicator, it is not even possible to read the language preference). 

If we are not relying on language negotiation, then each parallel version of HTML pages (on 
the live site) will not only differ in text and resource values, but the links that they contain 
will need to be different so that they point to files in the appropriate language.  This 
effectively overrides language negotiation and so once the user has selected a particular 
language, language negotiation will be ineffective.  It would still be useful to store HTML 
pages in a way that is consistent with language negotiation though, since at least the page that 
the user first visits on the site will be selected correctly.  However, if the user changes their 
language preferences on their browser whilst viewing some WEB page, the page will still 
display in the language that they chose on the original page.  The only way to change 
language preferences would be to make a control available on every page. 

If language negotiation is considered to be acceptable from the user's point of view, then this 
would make it very much easier to build the WEB site.   

Even if language negotiation is used, it does not preclude the inclusion of other user 
preference information in the localisation process.  For example, suppose we need to know 
the user's actual location as well as their language to decide which page to present.  This can 
be done by including a separate control for the user to select their location.  The batch process 
will need to set the links of the HTML pages to refer to those for the appropriate location. 

4.8 General Guidelines for HTML files 

As far as the organisation of the HTML files themselves is concerned, there are some general 
guidelines that are even more important in a multilingual environment. 



Guidelines for building multilingual Web sites Deliverable 1 

page 14 (27)  1999 EURESCOM Participants in P923-PF 

The HTML code should have the appropriate META tags set.  In particular, language, locale 
and character encoding.  If possible, the character encoding should be UTF-8, although older 
versions of browsers may only support native encodings since the standard for HTTP is ISO-
8859-1, which only supports 256 characters. 

Cascaded Style Sheets (CSS), which form part of Dynamic HTML (DHTML) can be of 
benefit too for multilingual WEB sites.  Not all languages will require identical formatting 
and Cascaded Style Sheets give a useful way of providing default formats for particular pieces 
of text that can be overridden for specific languages.  For example, it is unlikely that the set of 
styles that work for Western European languages would work say, for Japanese or Arabic.  
Using Style Sheets enables the translator to concentrate on the text alone in a way that is 
partially decoupled from the layout. 

Another feature that Dynamic HTML provides is for the client to request fonts from the 
server.  This means that the author of a WEB page can ensure that the fonts that they used are 
available to the client (subject to copyright).  There are two incompatible systems for doing 
this, one from Netscape/Bitstream called TrueDoc and one from Microsoft/Adobe called 
OpenType.  In both systems the process is the same, a local font is stored in a compressed file 
for transmission across the network when requested by the client.  Part of the format ensures 
that the font can only be downloaded from servers within specified domains (see Annex A, 
section 8: Character encoding and fonts technologies).  At the time of writing, there is no 
software that can process double byte characters for the TrueDoc system.  OpenType appears 
to handle double byte characters without a problem. 

Although it may be argued that a speaker of a particular language will have at least a minimal 
set of appropriate fonts installed, it is poor engineering practice to rely on the client 
configuration for the user to be able to see your WEB site.  Also, it gives a poor impression if 
say, an English speaker viewing a multilingual page sees the Japanese characters represented 
as missing character symbols. 

It is obvious that the 'charset' attribute should be set correctly for a WEB page, and this is 
particularly important for multilingual WEB sites since relying on a default character set will 
be particularly unreliable.  However, the most popular two WEB browsers (Netscape and 
Internet Explorer) do not interpret the charset in a way which is consistent with one another, 
let alone consistent with the standard.  For example, named and numbered entities should 
always be interpreted according to the Unicode character set irrespective of the 'charset' 
attribute.  This is behaviour defined as part of the SGML specification of HTML 4.  Both the 
mainstream browsers allow the 'charset' attribute to influence interpretation of entities.  Some 
of the less popular browsers however do show conformance with the standards. 

4.9 Pages with embedded scripts 

HTML pages can include scripts either to be executed on the client or the server.  There are 
various scripting languages (JavaScript, VBScript, ASP, PHP etc - see Annex A, sections 4, 5 
and 7).  Scripts may also need to be translated.  Any script needs to be very carefully written 
with this in mind.  General programming guidelines for writing international software apply 
here.  Primarily, this means a clear separation of localisable and non-localisable elements.  If 
the translator is expected to translate HTML files which contain scripts, then any localisable 
elements in the script must be made explicit.  Translators are not normally experts in script-
writing. 

The best way to achieve this is to place the localisable elements of the scripts into separate 
resource files and use the batch process to produce the 'live' files. 

Sometimes the procedural information needs to be localised.  For example, there may be 
procedures for constructing strings from data, such as say, a string representing a date.  This 
will be locale-dependent.  If each resource is just a string, then there is no reason why the 
string could not represent say, a function in a scripting language. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 15 (29) 

 Where 
processed 

What generates Need new 
browser? 

May use 
database 

Program
mable 

HTML Client Display maybe N N 

XML Client HTML, Display Y Y Y 

Java Client Display N N Y 

JavaScript Client Display N N Y 

CGI Server HTML N Y Y 

ASP Server HTML, Display N Y Y 

SSI Server HTML N N N 

CSS Client Display Y N N 

PHP Server HTML N Y Y 

Table 2 
Relations among various components of a Web page. 

Table 2 shows at a glance the relationship among various components of a web page. The 
columns show where component is processed (client- or server-side), what generates (HTML, 
display properties, client-side code), if it needs a modern (>1998) browser, if it may interact 
with a database, and if it is a programming language. 

4.10 Graphics 

Any WEB site would be pretty dull without some graphics and sometimes these will need to 
be localised as well as the text.  It may be that the image in the graphic is different, because of 
differing cultural sensitivities or marketing decisions, or it may be that embedded text has to 
be localised.  Sometimes, both cases will occur, if only because the text is longer in the target 
language than in the original language. 

It is important to keep the text layers separate from the graphics layers so that the text can be 
translated independently of re-drawing the graphic (if re-drawing is necessary).  It is possible 
that the text and the graphic could be combined in an off-line process such as that advocated 
here.  However, the results are more likely to be satisfactory if text and graphic are combined 
by hand. 

4.11 Use of a Translator's Workbench 

For all WEB sites (that are of any interest), it is likely that information will need to be 
updated from time to time.  This process of updating a WEB site is quite different to that of 
re-issuing a paper document.  Most WEB sites undergo frequent small changes almost 
continuously.  This means that the ongoing cost of maintaining a multilingual WEB site can 
be very high.  Considerable savings and improvements in consistency can be achieved by 
using a translation memory tool.  With such tools, each phrase that has been translated is 
stored. Next time a translation needs to be done, phrases that have already been translated will 
thus not be re-translated and phrases that are similar to previously translated phrases can be 
presented to the translator to improve speed and consistency.  

Related to translation memory is the issue of terminology management.  Specialised words 
are used in particular domains or even to achieve a particular effect.  For example, the top-
level page on a commercial WEB site normally has very carefully chosen terminology to 
project the right image for the company and to be technically accurate.  These terms need to 
be carefully chosen in each language and so will typically need to be translated by someone 
who is both a native speaker of the target language and has the appropriate technical and 



Guidelines for building multilingual Web sites Deliverable 1 

page 16 (27)  1999 EURESCOM Participants in P923-PF 

marketing skills.  They also need to be translated consistently each time they are used.  When 
such terms are chosen, they should be stored in a term bank for use by translators so that the 
effort of choosing these terms does not need to be duplicated. 

4.12 Web Content management tools 

Management of a Web site is the part of the process of building a site which lies between the 
content creation, that is tools and repositories, and the content delivery, performed by web 
servers and applications. This means that developing, deploying and quality review take part 
at that phase.  

Many systems, either commercial or free, exist to ease the task of content managing for a 
Web site.  Annex A shows (in sections 9 and 10) some of them in detail: the interested reader 
may refer to that Annex for further information. Among the products that may be used, there 
are: Vignette V/Series, a complete platform, from project management to site building (see 
http://www.vignette.com/); Allaire HomeSite and ColdFusion Studio, an integrated Web 
editor and a comprehensive system to build a site (see http://www.allaire.com/); Macromedia 
DreamWeaver family (especially the just born UltraDev, which helps the developer create 
web applications) and Macromedia Generator (see http://www.macromedia.com/); TeamSite 
from Interwoven, which prefers to concentrate on Content Management rather than to cover 
all steps of the process (see http://www.interwoven.com/); Frontier, from UserLand, contains 
a HTTP server, programming, database and XML environment, together with their workgroup 
application Manila (see http://www.userland.com/); Last, Zope is the leading Open Source 
web application server: this may be seen as a drawback from some people, but it may give 
really good results if the web developer is used to such products (see http://www.zope.org/). 

As this brief listing of offerings shows, many firms have products which cover more or less 
the whole spectrum of tools and applications needed to build a site. It's really difficult to say 
which product is the best choice: the answer depends from the environment where the Web 
designer works and from his tastes. Unfortunately, however, all of these products are designed 
to build a monolingual web site, and they do not take into account the fact that the same page 
will be present in different languages, or that the application should interact in different ways 
with the same database in order to come out with a localised page.  

Metadata standards are also important as Web Content Management Tools, since they ease 
the task of putting information about the kind of data present in web pages so that other 
external applications may exploit it. Annex A chapter 12 provides information on some of the 
existing standards.  

4.13 Web site management tools 

There exist tools (such as SDL's WEB Flow) that will monitor a site at pre-set intervals to 
check for files that have changed or been added.  These files will automatically be passed to a 
translation memory for a measure of how much new text needs to be translated. They can 
even produce an estimate of the cost of translating the new pages.   If necessary, the text of 
these files will be filtered out and passed to a human translator. 

4.14 Scripting languages and character encoding. 

In the architecture proposed in this section, the batch process will need to recognise strings in 
a text and carry out some kind of pattern matching.  A very popular language for such 
processing is Perl.  Perl claims to handle Unicode through UTF8 encoding and later releases 
of Perl will handle Unicode more directly if the underlying operating system supports it. 

However, to get a Perl script to work on multilingual text, it is advisable to set the 'locale' 
correctly so that say, date formatting and string processing functions behave correctly.  



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 17 (29) 

However, a multilingual WEB site will have different locales for different resources (of 
course!), therefore it may be necessary to alter the locale dynamically whilst generating the 
HTML files. 

A preferred alternative would be to use UTF8 as the character encoding scheme and restrict 
all locale-independent information to being written using characters in the ASCII range.  In 
this way almost any scripting language will function correctly without needing to know the 
locale and any locale-specific information is just treated as data by the script without needing 
to know the character set. 



Guidelines for building multilingual Web sites Deliverable 1 

page 18 (27)  1999 EURESCOM Participants in P923-PF 

5 Possible Implementations 

The previous section described guidelines for organising a multilingual WEB site.  These 
amount to aspirations which allow a clean separation of the different kinds of information that 
constitute such a site.  In practice, certain compromises may be required when the complexity 
of a WEB site is such that complete separation presents too much of an overhead compared 
with the complexity of the WEB site, or when total separation would lead to an inflexible 
design.  In this section, some examples of WEB sites of varying complexity are discussed, 
along with concrete suggestions as to how these WEB sites may be implemented using 
existing WEB tools and techniques 

5.1 A simple Web site 

Perhaps the simplest way to build a WEB site is just to create a few pages in HTML and put 
them in appropriate directories on a WEB server.  Such a WEB site could be localised by 
having a translator translate the files and then storing them in the appropriate way to allow 
language negotiation to retrieve the appropriate version of the page.  The translator would not 
have to update links, since language negotiation would retrieve the appropriate pages each 
time. 

It is clear that this approach to WEB site design completely ignores any of the guidelines 
described above.  So, what can be done to improve it? 

The first step is to provide an alternative way for the user to select locale.  An explicit control 
on at least the front page of the Web site that allows the user to select language would be 
useful.  When the user operates such a control, the page would be re-loaded.  If the user clicks 
on a link on the newly loaded page, we would like to make an attempt to stay with the locale 
that they have selected.  If we are not using language-negotiation (which we are not, if there is 
an explicit language control), then the target URL will need to indicate the locale desired.  
This means that as part of the translation of the page, we would need to alter those URLs 
whose targets we knew were available in the appropriate locale.  Since the URLs in this 
scenario are locale-specific, this will override language-negotiation completely. 

Clearly we would like to avoid having to alter all the target URLs by hand.  A better solution 
would be to have an automated process do this.  However we will need to state somewhere 
which URLs should be altered and which should be left the same (we would need a policy for 
this even with a human process).  We might have a policy such as internal WEB pages are 
displayed in the appropriate locale, external ones are displayed in the default locale for the 
target WEB site. 

With this approach to structuring a multilingual WEB site, we have kept formatting and 
content together.  Any alterations to the format would need to be replicated for all locales.  
For very small number of pages this may not be a problem.  However, if the number of pages 
is moderately large, then it will be very inefficient to do this.  Even with a monolingual site 
we might wish to keep formatting separate from content just to be able to store all formatting 
information in one place. 

To achieve this separation we need to maintain content separately from formatting and 
combine them to produce an HTML page.  This will also make the translation process easier 
as the translator does not need to deal with HTML formatted content. 

Combining the content with the format can either be done dynamically when the page is 
requested, or off-line as a batch process.  With the simple site described here, there is little 
benefit to building pages dynamically. 

Clean separation of content from format is very difficult to achieve in the general case.  If we 
are displaying mainly textual pages.  Our content may take the form of paragraphs to be 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 19 (29) 

displayed.  These paragraphs may require some embedded formatting, such as italicising 
certain words.  This means that in practice, there may be some benefit to relaxing the 
requirement for separation of formatting from content. 

5.2 A basic site with embedded scripts 

This is similar to the previous example, except that some of the HTML pages contain scripts.  
It has already been mentioned that it is important to keep the locale-dependent parts of scripts 
separate from locale independent parts.  The locale-independent parts could be left in the 
HTML files and the locale-dependent parts stored in separate files.  Again these would need 
to be combined either dynamically or off-line.  If the script is to run on the client then either is 
possible.  However, if the script is a server side script, then dynamic combination might 
present some problems since the locale-specific parts of the scripts will need to be inserted 
before being interpreted by the server. 

Locale -
independent
Data

Formatting
information

Locale
-dependent
resources

Off-line
process

HTML files

 

Figure 3 
An off-line process for managing a multilingual WEB site 

It is straightforward to create a process that would combine the locale-specific scripts with the 
locale independent parts of the HTML files.  This same process could be responsible for 
combining the content with the HTML templates.  This is shown in Figure 3. 

5.3 A semi-parallel site 

A more complex site might have many more pages and also might have a slightly different 
content for each locale.  This is one of the most difficult situations to manage since we wish 
to factor out commonalities between different localised versions of a WEB site, whilst still 
allowing the freedom to have differences in different locales.  In practice, it is also one of the 
most common situations. 

Variations between locales might include the presence or absence of particular content from 
certain pages, the presence or absence of certain pages and variations on formatting from one 
locale to another. 



Guidelines for building multilingual Web sites Deliverable 1 

page 20 (27)  1999 EURESCOM Participants in P923-PF 

In dynamic HTML, cascaded style sheets can be used to manage small differences between 
locales.  Each locale could have its own set of style sheets, which are variations on a shared 
set of style sheets.  This way each locale-specific style sheet would only have to specify 
differences from the generic styles. 

Layout differences will require different HTML templates.  HTML files are not cascadable, 
and therefore if there is even a small difference between locales, we would need to have a 
different HTML file.  To construct a particular page in a given locale, we would need to find 
the HTML template for that locale and combine this with the content for that locale.  If we 
wish to share HTML templates amongst more that one locale, we will need to provide an 
explicit mapping between HTML template and locale.  Again, this combination can be done 
either dynamically or off-line. 

When pages are only present in some locales (which will be typical of any even moderately 
large site), we need to have a policy of what to do with "missing" pages.  It was mentioned 
above that in such cases it would be useful to have an explicit policy (e.g. remove the link, 
link to a default locale, or refer to a locale-independent page which in turn refers to a localised 
version).  The policy may be general for the whole site, but is more likely to be link-specific 
(or at least target-specific).  This means that certain targets say, may only be applicable to one 
locale,  in which case we may want to remove the link altogether.  For other pages, it may 
have just been too expensive to localise the page and therefore we should display the page in 
some other locale version.  For links whose targets are external to our site, we may wish to 
attempt to find a localised version of the page, or we might wish to carry out some processing 
on the external page, such as machine translation. 

In this case, there is a significant advantage to generating pages dynamically.  We can 
determine the status of the target page at runtime and make a decision then as to what to do.  
For example, we could check for the presence of the target in the appropriate locale. 

The various components of this kind of system would be, 

Resource files 

These contain locale-dependent resources, such as localisable script elements, 
names for menu items etc. 

Content database 

This stores the bulk of the content for the WEB site 

Link policy file 

For each hyperlink, we will need a policy giving information about the target 
of the link.  For example, it could be that the target should be translated by a 
machine translation system if it does not already exist in the appropriate 
locale. 

HTML templates and Style Sheets 

These contain the layout and the details of the format.  Each HTML template 
will refer to a Style Sheet.  Each HTML template will correspond to a page 
for one or more locales. 

Locale to template map 

If the HTML templates are to be shared across locales, then there will need to 
be some way to state which template is to be used in which locales.  When a 
client requests a page, we would begin by identifying the appropriate 
template for that page.  This would contain the instructions for building the 
complete HTML page. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 21 (29) 

5.4 WEB sites using databases 

Many WEB sites, particularly those that support e-commerce, are built around a database.  
Typically, the database will contain say, product information, which will be used to generate 
an HTML page dynamically.  Normally, HTML pages are not stored directly in the database 
since this is very inflexible.  It is also very inefficient, since the database would be storing 
repeated layout information for very many pages. 

This kind of WEB site then, is similar to the case above, where a WEB page is built from 
content elements of some kind.  There could be some additional issues to be aware of when 
using databases.   If any database procedures are used which are sensitive to character 
encoding it will be necessary to ensure that the database can use, or be converted to the same 
character encoding as the rest of the system.  For example, Java uses Unicode 2.0 whereas the 
default encoding for Oracle is Unicode 1.2.  In most cases this will make no difference, 
however it is possible that if say, the 'ORDER' operator is used in an SQL query, then for 
certain locales the sort order may not be correct. 

It is not essential to maintain the same character encoding throughout the system, converters 
may be used to map between the formats used.  It may be convenient to store text in a locale-
specific encoding.  It will make system design much easier though if Unicode can be used 
throughout. 



Guidelines for building multilingual Web sites Deliverable 1 

page 22 (27)  1999 EURESCOM Participants in P923-PF 

6 Tools for multilingual web sites  

This section presents an inventory of tools that are required for building, managing and 
exploring multilingual web sites. It is not aimed to list specific commercial or non-
commercial tools, but it presents types of tools that should be involved in localising existing 
web sites or creating new multilingual web sites and exploring them. 

Tools can be classified into two categories: 

1. Enterprise/Management tools: those involved in building and maintaining multilingual 
web sites. This category also includes external localisation agencies. 

2. Exploration tools: those involved in using multilingual web sites. These tools are mainly 
language-related tools (or linguistic tools). 

 
Detailed information about tools together with examples can be found in the deliverable 
annexes: 
− Tools for building and maintaining web sites (see Annex A). 

− Linguistic tools (see Annex B). 

 

6.1 Enterprise/Management tools for multilingual web sites 

A short list of Enterprise/Management tools is: 

− Multilingual authoring tools (HTML/XML editors) for creating and maintaining 
multilingual web pages. 

− Tools for HTML/XML parsing (identification and extraction of web page components: 
text, graphics, links, etc.) and translatable text quantification. These tools have an 
important role in preparing the web site localisation. 

− Off-line machine translation systems for localisation tasks. 

− Specific scripts and procedures for dynamic and personalised interaction with the user 
depending on his language and culture (CGI, SSI, Dynamic HTML and ASP). 

− Tools for security and privacy mechanism (useful for e-commerce). 

− Tools for database management. 

− External localisation agencies (assimilated to Enterprise/Management tools). External 
agencies can have an important role in multilingual web sites creation (text drafting, 
localisation and/or translation, graphics design, etc.). 

Other tools are necessary to access to multilingual web sites: 

− Search engines with multilingual capabilities (language identification, etc.). 

− Multilingual web browsers. 

− Tools for Voice input/output with multilingual capabilities. 

6.2 Linguistic Tools 

This section is not aimed to develop all aspects related to language tools that are useful or 
suitable for multilingual web sites. There is a lot of literature that contains more complete 
descriptions of such tools. The reader can also refer to the annexes to this deliverable, 
especially Annex B, where these tools have been described. In this section a non-exhaustive 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 23 (29) 

list of language related tools is introduced, it includes machine translation and machine-aided 
translation, automatic generation of text from data, text summarisation and cross-language 
information retrieval. Other language-related tools, such as speech tools, are also suitable for 
web environment. The reader can refer to Annex C for a detailed description of speech-related 
tools. 

6.2.1 Translation 

6.2.1.1  Machine Translation 

Of course the greatest additional cost of running a multilingual Web site is translation.  It is 
therefore extremely desirable to be able to automate fully the translation process.  There are 
certainly places where machine translation can be used, but it needs to be used cautiously and 
with appropriate management of the expectations of the user. In a multilingual Web 
environment a machine translation system is suitable for two main tasks: 

− Web site localisation. 

− Cross-language information retrieval. This point is described in section 6.4. 

For Web site localisation a machine translation system is generally used in off-line mode to 
translate textual parts of web pages. Human revision of translation (post-edition) is strongly 
required, especially for top-level pages of the web site. Translation revision is necessary not 
only to correct wrong translations but also to check whether the produced texts are suitable 
for cultural implications of the target language.  In addition to translation correctness, one of 
the major technical problems in machine translation of web pages is related to format 
preservation of text, with regard to HTML tags and to other components of a web page. To be 
translated, the text is extracted from the source document and then it is restored, after 
translation, into the target document, according to formatting codes. One example where 
format preservation of text is required arises when textual segments change position. Consider 
the following sentence to be translated from English to French:  "He bought a <B> red </B> 
car" .  This sentence risks to be translated "Il a acheté une <B> voiture </B> rouge" where 
formatting code does not apply to the right word (rouge/red). In conclusion machine 
translation systems that are used for web site localisation may consider not only textual parts 
of web pages but also formatting tags and other significant parts of a web page. 

A wide list of machine translation systems can be found in the John Hutchin's MT 
Compendium: http://www.eamt.org/archive/compendium.pdf 

6.2.1.2 Translation Memories 

Translation memory is a machine-aided translation and it is widely used nowadays and 
recognised as a very practical utility, especially for translation experts. Due to the fact that 
repetition is very common in technical fields and also in frequently updated Web pages or 
help files, translation memory comes as a very handy and efficient option. A translation 
memory utility takes a certain source text and it stores it together with its correspondent 
human translation. Before a new translation starts, the translation tool will scan the text and 
find exact or fuzzy matches for the new sentence, suggesting previously stored translations to 
the translator. The translator can usually interact with the system and choose whether to 
accept them or not, but it is recommended to stick to an existent terminology in order to avoid 
extensive updating across files.  

Some of the most well known products in the market are TRADOS's Translator's Workbench 
http://www.trados.com/workbench/[1], Déjà vu http://www.atril.com/[2], and IBM's 
Translation manager http://www.software.ibm.com/ad/translat/[3]. 



Guidelines for building multilingual Web sites Deliverable 1 

page 24 (27)  1999 EURESCOM Participants in P923-PF 

6.2.2 Automatic generation of text from data 

The field of natural language generation (NLG) is concerned with the ways computer 
programs can be made to produce natural language text from computer-internal 
representations of information[4]. Text generation is an essential part of many natural 
language applications. For instance, Machine Translation and Summarisation are not possible 
without some kind of natural language generation. One of the generation techniques consist in 
using ‘templates’, string patterns that contain empty slots where other strings must be filled 
in. This type of generation is used in several applications, for instance in the automatic 
generation of fairly standard letters. Linguistic notions do not play a crucial role in this simple 
technique. Some systems can handle agreement and /or conjunction, but not in a theoretically 
sound way. This way of language generation may be used in limited domains. The advantages 
are that the technique is very simple and fast (real time operation). NLG is perhaps the NL 
component for which it is most clear that a large degree of domain and application 
dependence is inevitable. For some applications seemingly simple template based techniques 
are fully adequate, whereas other applications might need the full power of linguistically 
inspired approaches, and probably even more. 

The more scientifically oriented approaches to text and language generation are mostly based 
on some kind of linguistic theory. All approaches that have received some attention in the 
community appear to distinguish two or three major stages of generation: single-sentence 
generation (also called “realisation” or “ tactical generation”) and multi-sentence generation 
(also called “sentence planning” or “micro planning”) and content selection (also called “text 
planning” or “macro planning”). Sometimes content selection and multi-sentence generation 
are also collectively referred to as “strategic generation”. 

A survey of the literature and the most relevant web sites suggests that NLG is an active 
research topic, but that relatively few commercial products are available. 

More details about NLG techniques and literature can be found in Annex B (section 6: 
Language Generation).  

6.2.3 Automatic Text Summarisation 

Text summarisation is a term that is used to designate a large number of different operations. 
In a strict interpretation ‘summarisation’ refers to the process that generates a complete 
abstract of a potentially lengthy document, in such a way that the most important information 
in the text is represented in the summary. The text of the summary is generated on the basis of 
the meaning of the document. Software that is able to produce this type of summary does not 
yet exist. The process implemented by summarisation products is more accurately 
characterised as ‘abridgement’: instead of computing the meaning and argument structure of 
the document key sentences, key phrases and key words are determined, and concatenated to 
produce a shorter version of the text that still contains the essential information. Some 
‘abridgement’ products are capable of shortening the key sentences that are taken from the 
text, for instance by deleting parenthetical remarks.  

One essential difference between abstracting and abridging is that the former is virtually 
impossible without substantial world knowledge, whereas the latter can suffice with clever 
statistical processing of a document, probably against the background of a thesaurus, or a list 
of potentially relevant terms [5].  

6.2.3.1 Types of Summaries 

The uses of Text Summarisation vary with different needs and applications. The amount of 
compression (ratio of summary length to source length) or the “most relevant content” 
depends on the intended use. In order to develop consistent procedures to create summaries, 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 25 (29) 

responding to these needs and applications, it is necessary to identify and to take into account 
the “context factors”: input (source form, subject type and source unit), purpose (audience and 
function) and output (material, format and style).  A typology of summaries can be found in 
Annex B (section 8: Text Summarisation)[5,6]. Each type of summary (or the combination of 
types) has different features, need different methods and techniques to be created and must be 
evaluated according to different criteria. 

Multilingual summarisation consist in developing engines that employ language-neutral 
methods or simplified language-specific methods to work across languages, and linking 
summarisation engines to translation engines[7,8]. 

6.2.3.2 Commercial Systems 

Nowadays no experience of integration of text summarisation tools to the web is known as 
having been successful, especially in a multilingual context. However some commercial 
systems exist, among them:  
− Extractor  (NCR / IIT): http://extractor.iit.nrc.ca/[9] 

− MS Word AutoSummarize: 
http://www.slate.com/features/cogitoautosum/cogitoautosum.asp[10] 

− ProSum (British Telecom): http://transend.labs.bt.com/prosum/word/index.htlm[11] 

− LinguisticX – (Xerox Company): 
http://www.inxight.com/products/enterprise/summserv.htlm[12] 

− ConText  (Oracle Corporation): http://oracle.com.ar:1000/products/context[13] 

− WebSumm  (MITRE): http://www-i.mitre.org/pubs/edge/july_97/first.htlm[14] 

Descriptions of these systems can be found in the Annex B (section 8.5: Commercial 
Systems). 
 

6.2.4 Information retrieval 

6.2.4.1 Cross-language information retrieval 

Cross-Language Information Retrieval means the retrieval of documents based on explicit 
queries formulated by a human using natural language when the language in which the 
documents are expressed is not the same as the language in which the queries are expressed. 
Users seeking information from a particular information source could benefit from the ability 
to query large collections once using a single language, even when more than one language is 
present in the collection. It is the ability to issue a query in one language and receive a 
document in another that distinguishes cross-language information retrieval from monolingual 
information retrieval. Monolingual and cross-language retrieval functionality can certainly 
both be provided by a single system. 

Concretely, Cross-Language Information Retrieval is insured through the integration of a 
machine translation system to a search engine. The machine translation system is used in on-
line mode and serves for two different translation tasks: 

- Query translation,  and/or 

- Document translation. 

When storage is limited or several languages must be accommodated, translating the query is 
more practical than translating each document into every language. On the other hand, a 
strategy based on document translation can permit the translation workload to be performed at 
indexing time. These alternatives and variations on them, such as mapping both the queries 



Guidelines for building multilingual Web sites Deliverable 1 

page 26 (27)  1999 EURESCOM Participants in P923-PF 

and the documents into language-independent representations, present fundamental tradeoffs 
that designers of cross-language information retrieval systems must consider. 

The most known machine translation system associated with information retrieval engine is 
Systran associated with the AltaVista research engine (http://www.altavista.com) and with the 
international Voila portal of France Telecom (http://www.voila.com). Other machine 
translation systems are also available such as Reverso (Softissimo France) which has been 
integrated to the local Voila portal of France Telecom (http://www.voila.fr) and Logos with 
Yahoo search engine (http://www.yahoo.com[15]). 

6.2.4.2 Information Extraction 

One of the typical features of standard search engines is their impermeability to user needs. 
Statistical techniques of relevance calculus can help a lot in refining and expanding queries, 
but they are hardly effective in the task of fulfilling more specific desiderata of the user. In a 
sense, they tend to interpret every query as a request of information about a certain topic, 
whereas the user might be interested in other (and more specific) forms of interaction, such as 
buying, selling, renting, downloading, talking, etc. Most Web search engines are based on 
keyword retrieval of text, however, where the intention is to identify a product or service from 
within a catalogue, other types of retrieval might be more appropriate, which take advantage 
of the structure of the product information. For example, when buying a car there are 
particular fields that can be used to capture the customer requirements, such as price range, 
model, colour, engine size etc. 

It is assumed that a functional dimension has to be added to the indexing and retrieving 
machinery of a standard web based search engine. It is evident that this dimension can not be 
reached by using standard information retrieval techniques. This new dimension is called 
"Information extraction". Indeed, once user's expectations have been identified, information 
extraction techniques are able to provide much more effective results, as they can analyse 
small parts of documents just for the purpose of mining the kind of data in which the 
information seeker might be interested. 

The information extraction domain is a new and active research topic. Except for some 
research prototypes based on reformulation of questions or on machine learning, almost no 
commercial products are available. 



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 27 (29) 

7 Conclusions 

The need for multilinguality in Web presence is already evident. Soon the number of non-
English speaking customers who are connected to the Internet will outnumber the native 
English speakers. Moreover, it has been shown that the large majority of Internet users prefer 
to be addressed in their native language. However, true multilingual Web sites are difficult 
and expensive to create and maintain, because of the lack of experience with such services. 
This document provides the starting point for the development of ‘best practice guidelines’ 
that will make the creation and maintenance of multilingual Web sites more cost-effective. To 
that aim we have analysed the roles, the architectures and the tools that are involved in 
multilingual Web sites.  

We have distinguished roles related to the human actors from those related to technology.  

Human roles include the Web manager, the Web builder, the end user and some more crucial 
roles, i.e. the translator and, probably the most important one, the designer.  

The designer is the person who creates the structure of the Web site in such a way that it can 
accommodate the various language versions of the site. A common thread is the need to 
choose structures and architectures that support the separation of content, formatting (or 
rendering) and navigation, which is essential for all but the simplest Web sites. This 
separation is especially important for multilingual sites that bring an additional level of 
complexity of their own.  

A proper separation of content from formatting and navigation also frees the translator from 
the need to understand the details of the programming in a Web site. It also enables him to 
reap the maximal profit from language tools like translation memories.  

Besides human roles, four major technology-related roles were identified, i.e.. browsers, 
language tools, content management tools and Web support tools. The discussion was focused 
on language tools. 

In its second part this document provides high-level descriptions of several different 
architectures for multilingual Web sites, starting with a very simple one and proceeding to 
potentially very complex applications. Here, the value of separating content, formatting and 
navigation is again emphasised. With reference to the previously defined (human and 
technology-oriented) roles it is explained how sites of different complexity are best designed 
and managed.  

This document also provides an introduction to four fairly comprehensive appendices. These 
appendices deal with Web site technologies (Appendix A), Language tools (Appendix B), 
Applications of Speech Technology (Appendix C), and possible multilingual architectures 
(appendix D), respectively. Appendix B discusses language tools, including tools for machine 
translation, translation memories, text summarisation, text generation, cross-lingual 
information retrieval and information extraction. The Appendix includes appraisals of the 
capabilities of generic tools. It appears that fully automatic translation does not provide high 
quality results. Therefore, it is recommended that the top-level pages of a site are translated 
by knowledgeable human translators. Pages deeper down in the hierarchy of a site, which are 
probably requested much less frequently, and probably by users who have a genuine interest 
in the contents, can be translated automatically to enable the user to grasp the main message. 
Pages which are updated automatically, like weather conditions or stock data, should be 
written in a standard language to make the use of automatic translation tools easier. 

It was pointed out that translation memories are very attractive tools to make the maintenance 
of Web pages that are subject to frequent minor updates much more cost-effective. These 
memories store previous translations. By simply retrieving pre-existing translations the task of 
the translators is simplified, and at the same time consistency of the translations is enhanced 



Guidelines for building multilingual Web sites Deliverable 1 

page 28 (27)  1999 EURESCOM Participants in P923-PF 

either when a translation is carried out by different translators, or by the same translator on 
different occasions. 

In summary, this document shows that the ‘total cost of ownership’ of multilingual Web sites 
can be reduced and controlled by a proper design of the site and the proper deployment of a 
growing range of tools. At the same time, this document provides an expert appreciation of 
the possibilities, but also of the limitations of the present generation of language tools.  



Deliverable 1  Guidelines for building multilingual Web sites 

 2000 EURESCOM Participants in Project P923-PF page 29 (29) 

8 References 

[1] 'The Trados Workbench' http://www.berlitz.ie/twe/default.htm  

[2] 'The DéjàVu WEB site' http://www.atril.com/  

[3] 'IBM TranslationManager WEB page' http://www.software.ibm.com/ad/translat/tm/  

[4] 'Chapter 4 Language Generation' http://cslu.cse.ogi.edu/HLTsurvey/ch4node2.html  

[5] Grishman R., Hobbs J., Hovy E., Sanfilippo A. and Wilks Y. 'Cross-lingual Information 
Extraction and Automated Text Summarization' pp in 'Multilingual Information 
Management:Current Levels and Future Abilities. A report Commissioned by the US National 
Science Foundation and also delivered to the European Commission's Language Engineering 
Office and the US Defense Advanced Research Projects Agency' eds. Hovy E., 
http://www.cs.cmu.edu/~ref/mlim/chapter3.html  

[6] Jones K. S. 'Automatic summarising: factors and directions' in 'Advances in Automated 
Text Summarization' eds. Mani I. and Maybury M., MIT Press, (1998)  

[7] Erbach G. and Uszkoreit H.'MULINEX - Multilingual Indexing, Navigation and Editing 
Extensions for the World Wide Web' D 0.19 Final Report  (1997)  

[8] 'MINDS project WEB site (New Mexico State University)' 
http://crl.nmsu.edu/research/projects/minds/goals.htlm  

[9] 'Extractor WEB site' http://extractor.iit.nrc.ca/  

[10] 'MS Autosummarize WEB site' 
http://www.slate.com/features/cogitoautosum/cogitoautosum.asp  

[11] 'ProSumm WEB site' http://transend.labs.bt.com/prosum/word/index.htlm  

[12] 'LinguiticX WEB site' http://www.inxight.com/products/enterprise/summserv.htlm  

[13] 'Oracle Context WEB site' http://oracle.com.ar:1000/products/context  

[14] 'MITRE WEBSumm site' http://www-i.mitre.org/pubs/edge/july_97/first.htlm  

[15] 'Yahoo WEB site' http://www.yahoo.com  


